HEAT STRESS ABATEMENT

Heat Stress Abatement
• Need to slow Heat Gain and/or Speed up Heat Loss

Heat Transfer Methods
• Radiation
• Conduction
• Convection
• Evaporation

Increase in Production

Radiation
Radiation
- Direct sunlight to cow (Heat stress)
- Cow directly to night sky (Cooling)

Convection

Penn State Extension
Convection is Dependent on ...
- Temperature of air around the cow
- Speed of air around cow

Increase Convective Cooling
- Air Exchange in Natural Ventilation
 - \(Q = E \times A \times V_w \)
 - \(Q \) = air exchange rate
 - \(E \) = effectiveness factor
 - \(A \) = area of inlet
 - \(V_w \) = wind velocity

Goal is have inlet to be 7 to 11 ft\(^2\)/cow

Don’t forget the endwall

At Cow Level!!!
Higher Air Velocity
• Increases cow’s cooling ability by carrying away hot air close to the skin
• Must create “turbulence” around the cow
• 308 to 440 fpm (3.5 to 5 mph)

Circulation Fans
• Circulation fans added to increase Air velocity

Circulation Fans
• Space fans 10 - 12 X diameter
 – 36” diameter - 30 to 36 ft
 – 48” diameter - 40 to 48 ft
• Approximately 6 to 10 ft high
• Tilt 10° to 20° from vertical

Circulation Fans
• Located over every row of stalls & the feed alley
• Positioned to move air over the cows back

Maintenance
HVLS
• High Volume Low Speed

HVLS Recommendations
• Mount fans over cows at ~ 2X fan diameter

HVLS Recommendations
• Watch out for height & clearance issues

Evaporation

Moisture & Heat Production

Based on 1500-pound dairy cow
ASABE EP270.5

<table>
<thead>
<tr>
<th>Temp (°F)</th>
<th>MP (oz H$_2$O/h)</th>
<th>SHL (W)</th>
<th>THL (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>18.5</td>
<td>1293</td>
<td>1633</td>
</tr>
<tr>
<td>50</td>
<td>24.0</td>
<td>1020</td>
<td>1497</td>
</tr>
<tr>
<td>59</td>
<td>31.2</td>
<td>816</td>
<td>1429</td>
</tr>
<tr>
<td>70</td>
<td>31.2</td>
<td>748</td>
<td>1361</td>
</tr>
<tr>
<td>81</td>
<td>43.2</td>
<td>408</td>
<td>1293</td>
</tr>
</tbody>
</table>
Evaporative Heat Removal
• BTU's to Evaporate water
 – ~ 1,000 BTU per 1 pound of water
 – ~ 8,300 BTU per 1 gallon of water

Add Evaporative Cooling
• 1st increase water space
• Consumption can be 2X in hot weather

Evaporative Cooling
• MUST have the air exchange and velocity first
 • Decrease air temperature
 or
 • Remove heat directly from cow

Evaporation
• Increases with
 – Higher temperatures
 – Lower humidity
 – Higher air speed

In-direct Evaporative Cooling
• Lower ambient air temp by evaporating water
• Then cool the cow with this ‘cooler’ air
 – i.e. increase convective cooling by lowering temp of ambient air
In-direct Evaporative Cooling

- Large water droplet wets the cow to the skin.
- When water dries it removes heat directly from the cow (~75% to 80%)

Direct Evaporative Cooling

- Total water usage
- Efficiency of heat removal
- Two different systems with two different methods

Sprinkler Design

- Apply .03 inches per ft²
- Cover 5ft to 6ft area behind the feed barrier
- Repeat every 5 to 15 minutes dependent on temperature

Evaporative Cooling Caution

- Need to be careful to not coat the cows with a fine layer of water trapping air close to the skin.
- Trapped air layer will actually insulate the cow & slow convective cooling!!

Heat Abatement Steps

- Decrease solar load
 - Shade
- Increase Convective Cooling
 - Larger air exchange rate
 - Faster air velocity w/in the shelter (at cow level)
- Increase Evaporative Cooling Capability
 - Added drinking water
 - In-direct evaporative cooling
 - Direct evaporative cooling
Questions?

John T. Tyson, P.E.
Agricultural Engineer
Mifflin County Extension
(717) 248-9618
jtyson@psu.edu

Penn State is committed to affirmative action, equal opportunity, and the diversity of its workforce.